2009/09/09

الضرب

الضرب. القاعدة الأخيرة المستخدمة في حل المعادلات البسيطة تنص على مايلي: إذا ضربنا كل طرف من طرفي المعادلة في نفس العدد فإن الطرفين الناتجين يكونان متساويين (الضرب في العدد صفر بالطبع مسموح به ولكن من الواضح أنه غير مفيد هنا). ومن ثم فإن جذور المعادلة الجديدة مساوية لجــذور المعادلة الأصلية. فعلى سبيل المثال، بضرب طرفي المعادلة 1/4 س = 5 في العدد 4 نحصل على 4× (1/4) س = 4× 5. أي س = 20. وفيما يلي توضيح للقواعد الأربع:

2/3 س - 4 = 1/4 س + 6

من المؤكد أن حل معادلة تحتوي على أعداد صحيحة أسهل من حل معادلة تحتوي على أعداد كسرية. ولذا نقوم بالتخلص من الكسرين 2/3 و 1/4 وذلك بضرب طرفي المعادلة في العدد 12 لنحصل على:

8 س - 48 = 3 س + 72

بإضافة العدد 48 إلى طرفي المعادلة نحصل على:

8 س = 3 س + 120.

وبطرح 3 س من طرفي المعادلة نحصل على:

5 س = 120

وأخيراً بقسمة طرفي المعادلة على العدد 5 نحصل على:

س = 24

إذن مجموعة الحل هي {24}.

نستطيع التحقق من صحة الحل، بالتعويض عن س في المعادلة الأصلية بالعدد 24:

2/3 × 24 - 4 = 1/4 × 24 + 6

16 - 4 = 6 + 6

12 = 12

وبما أن استخدام طرق حل المعادلة لم يؤد إلى أي حل آخر، فإن 24 هو الحل الوحيد للمعادلة.
قياس درجات الحرارة

الأعداد الموجبة والأعداد السالبة. في علم الحساب، نستطيع جمع وضرب وقسمة الأعداد الطبيعية ولكننا لانستطيع دائما طرح هذه الأعداد. فمثلاً 3 - 5 لاتعني شيئا في علم الحساب. غير أن الجبر استطاع أن يتغلب على هذه المشكلة وذلك بتوسيع نظام الأعداد الطبيعية. ففي الحساب المعتاد تمثل الأعداد المـقادير فقـط، فتحـدثنا عن كم من الأشياء في مجموعة. ولكن كثيراً من القياسات التي نواجهها في حياتنا اليومية تهتم بمعرفة كل من المقدار والاتجاه. ومن الأمثلة الجيدة على ذلك قياس درجات الحرارة حيث هناك درجات حرارة فوق الصفر وأخرى تحت الصفر. في الجبر نستخدم أعدادًا تبين الاتجاه .

وباستطاعتنا توضيح هذه الأعداد الجديدة على خط كما يلي.

نأخذ العدد صفر ليكون نقطة الأصل أو البداية. النقاط الواقعة على يسار الصفر تعين مسافة أو اتجاهًا موجبًا، هذه الأعداد تمثل درجات الحرارة فوق الصفر في المثال السابق. أما النقاط الواقعة على يمين الصفر فإنها تدل على مسافة أو اتجاه سالب، وهذه الأعداد تمثل درجات الحرارة تحت الصفر. فالنقطة أ لا تدل على العدد 1 فحسب ولكن + 1، أي العدد الموجب 1. وتدل الإشارة + على الاتجاه الموجب. كذلك تدل النقطة ب على العدد - 1، أي العدد السالب 1 وليس العدد 1 فقط. وتدل الإشارة (-) على الاتجاه السالب. وتسمى الأعداد الممثلة على خط الأعداد بالأعداد الموجبة والأعداد السالبة. ويمكن استخدام هذه الأعداد في حياتنا اليومية لتدل مثلاً على درجات الحرارة، عدد الأمتار فوق مستوى أو تحت مستوى سطح البحر، التغير في أسعار سوق الأسهم، الأرباح التجارية، وكثير من الاستخدامات الأخرى. ومقابل كل عدد موجب يوجد عدد سالب مساو له في المقدار، فالعدد 7 على سبيل المثال يعني دائما سبعة أشياء موجباً كان أم سالبا. وتعرف القيمة المطلقة لعدد بأنها القيمة الحسابية لذلك العدد. وبمقدورنا جمع وطرح وضرب وقسمة الأعداد الموجبة والسالبة معا ولكن بقواعد تختلف عن تلك المستخدمة على الأعداد في الحساب المعتاد.

ليست هناك تعليقات: